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Abstract. Certain types of generalized undeformed and deformed boson algebras which admit
a Hopf algebra structure are introduced, together with their Fock-type representations and their
correspondingR-matrices. It is also shown that a class of generalized Heisenberg algebras
including those underlying physical models such as that of Calogero–Sutherland, is isomorphic
with one of the types of boson algebra proposed, and can be formulated as a Hopf algebra.

1. Introduction

Deformations of the boson algebra have recently been the subject of extensive research partly
because of their significance in quantum groups (see for example [1–5]) and supergroups
[6]. Chronologically first comes the Arik–Coonq-deformation of the Heisenberg algebra
[7]:

aa† − qa†a = I (1)

followed by the Macfarlane–Biedenharn [8, 9], and Sun and Fu [10]q-deformed bosons

aa† − q±1a†a = q∓N. (2)

The Chakrabarti–Jaganathan two-parameter model [11]

aa† − pa†a = q−N (3)

and the Calogero–Vasiliev model [12]

[a, a†] = I + 2νK K2 = I (4)

which coupled with (2) as

aa† − qa†a = q−N(I + 2νK) (5)

was studied in [13], while itsq-deformation by Macfarlane [14] is

aa† − q±(I+2νK)a†a = [I + 2νK]qq
∓(N+ν−νK) K = (−1)N (6)

where as usual [x]q = (qx−q−x)/(q−q−1). In addition, with the Katriel–Quesne minimally
deformed oscillators [28] which provides an attempt to unify existing deformed oscillators,
generalizations and applications of the above models to mathematics and physics have been
of increasing interest, and their consistency, interrelation and representations have been well
analysed [15–27].

Generalizations of the usual Heisenberg algebra that have appeared in [12] have been
implemented [29, 30], in describing relativistic fields with arbitrary fractional spin (anyon),
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‘bosonizing’ supersymmetric quantum mechanics and pointing out the relation of it with
integrable quantum mechanical models [31] such as the Calogero–Sutherland model [32, 33].

On the other hand, the recent investigation [34–38] of simplestq-deformations of the
Heisenberg algebra has also been shown to play a key part in obtaining and classifying
representations of deformed boson algebras [39].

The relation of a possible Hopf algebra structure consistent both with an appropriate
definition of a boson algebra and its deformation have also been addressed [23, 40–43]. In
particular in [41–43] a certain definition of deformed boson algebra was investigated having
a Hopf algebra structure, while in [44] theR-matrix obtained was corrected and generalized
using the quantum double construction. The results of [41] were partly generalized in [23].

The aim of this paper is to investigate certain generalizations of undeformed and
deformed boson algebras possessing a Hopf algebra structure, which in [45] will be used
to establish an algebraic relation with already known boson algebras (undeformed and
deformed). In section 2, after introducing general notions on quasitriangular Hopf algebras,
we present and analyse the properties of undeformed generalized boson algebras,Bζ (α, β),
ζ = ±1, which admit a Hopf algebra structure, while in section 3 we give aq-deformation
B
q

ζ (α, β) of the previous algebras, prove that they also admit a Hopf structure and present
an R-matrix for them. We further analyse, in section 4, a more general form of the
‘deformed’ Heisenberg algebraHν of [12], showing that under certain conditions it admits
a Hopf algebra structure and demonstrate its connection with the undeformed boson algebra
Bζ (α, β) defined in the second section. Finally, in section 5 we end with certain comments
on possible physical and mathematical applications and consequences of our approach.

2. The undeformed generalized boson algebrasBζ(α,β)

We begin by stating certain generalities on quasitriangular Hopf algebras needed later.
Consider a unital associative algebra, over a fieldF , with multiplicationm : A⊗ A→ A

(i.e.m(a⊗ b) = ab, ∀a and∀b ∈ A) and unitu : F → A (i.e. u(1) = I , the identity onA)
endowed with a Hopf algebra structure (cf [47]), that is, having a coproduct1 : A→ A⊗A,
a counitε : A→ F (which is a homomorphism) and an antipodeS : A→ A (which is an
antihomomorphism, i.e.S(ab) = S(b)S(a), and we shall assume that it has an inverseS−1)
subject to the following consistency condition:

(id⊗1)1(a) = (1⊗ id)1(a)

(id⊗ε)1(a) = (ε ⊗ id)1(a) = a
m(id⊗S)1(a) = m(S ⊗ id)1(a) = ε(a)I ∀a ∈ A.

(7)

Let T be the twist map onA ⊗ A defined byT (a ⊗ b) = b ⊗ a. Then an opposite Hopf
algebra structure also exists onA with coproductT1

.= 1T , antipode S−1 and counit as
before. According to Drinfeld [1] a Hopf algebraA is called quasitriangular if an invertible
elementR ∈ A⊗ A exists such that

1T (a)R = R1(a) ∀a ∈ A
R13R23 = (1⊗ I )R R13R12 = (I ⊗1)R

(8)

with the usual meaning ofR12, R13, R23 as embeddings ofR in A⊗A⊗A. The inverseR−1

is then given byR−1 = (S ⊗ I )R and it is easily shown thatR satisfies the Yang–Baxter
equation,R12R13R23 = R23R13R12.

Before introducing the algebraBζ (α, β), recall that the boson algebraB is generated
by a, a†, andN subject to the following relations:

[a, a†] = I [N, a] = −a [N, a†] = a† (9)
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and a Fock space representation is provided by

|n〉 = 1√
n!
(a†)n|0〉 N |n〉 = n|n〉

a|n〉 = √n|n− 1〉 a†|n〉 =
√
(n+ 1)|n+ 1〉.

(10)

The popular identificationa†a = N andaa† = N + 1 holds in the quotientB/〈C〉 (and
on the above Fock space) where〈C〉 is the two-sided ideal generated byC = a†a−N . As
was demonstrated in [40], a Hopf algebra structure on this algebra fails to exist.

We shall now consider the family of algebrasBζ (α, β) generated bya, a† andN subject
to the following relations:

aa† − ζa†a = αN + βI ζ = ±1

[N, a] = −a
[N, a†] = a†

(11)

whereα, β ∈ R. If we take the quotient ofB−1(2, 1) with respect to an ideal generated by
a†a − N we recoverB/〈C〉 above. Although a Hopf algebra structure forB1(α, β) exists
(see (13) below),B−1(α, β) has to be enlarged to become a Hopf algebra by adding an
invertible element(−1)N which will be treated as a supplementary generator satisfying the
following relations:

{(−1)N , a} = 0= {(−1)N , a†} [(−1)N ,N ] = 0 (12)

where hereafter{x, y} = xy + yx. Similar considerations were used in [46] and in that
paper’s context our enlarged algebraB−1(α, β) can be thought of as a spectrum-generating
algebra for the ordinary harmonic oscillator, while the elementg of [46] will be g = (−1)Ñ

provided that we impose the conditiong2 = (−1)2Ñ = I whereÑ = N+ β

α
. At this point we

do not necessarily have to impose this condition (which implies that(−1)2N = (−1)−2β/α).

We shall denote this enlarged algebra and its universal enveloping algebras byB+−1(α, β)

andU(B+−1(α, β)) respectively. The coproduct, counit and antipode ofBζ (α, β) satisfing
(7) are given by:

1(N) = N ⊗ I + I ⊗N + β
α
I ⊗ I

1(a) = a ⊗ I + ζ Ñ ⊗ a
1(a†) = a† ⊗ I + ζ−Ñ ⊗ a†

ε(N) = −β
α

ε(a) = ε(a†) = 0 ε(I ) = 1

S(N) = −N − 2β

α
S(a) = −ζ−Ñ a S(a†) = −a†ζ Ñ+1

(13)

provided thatα 6= 0, together with

1((−1)±Ñ ) = (−1)±Ñ ⊗ (−1)±Ñ ε((−1)±Ñ ) = I S((−1)±Ñ ) = (−1)∓Ñ . (14)

for theζ = −1 case. Moreover, an opposite Hopf algebra structure also exists forBζ (α, β)

with coproduct1T and antipode the inverseS−1of S which can be immediately deduced
from S given in (13) and (14).

A Fock-type representationBζ (α, β), with a|0〉 = 0, N |n〉 = n|n〉, n ∈ Z+ and
〈0|0〉 = 1, exists such that, whenα > 0, β > 0 is unitary and is provided by:

|n〉 = 1

([n]ζ !)
1
2

(a†)n|0〉
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a|n〉 = [n]
1
2
ζ |n− 1〉 a†|n〉 = [n+ 1]

1
2
ζ |n+ 1〉

where

[n]ζ =
(
αn

2
+ 2β − α

4
(1+ ζ n+1)

)(
n(ζ + 1)+ 1− ζ

2

)
[n]ζ ! =

n∏
l=1

[l]ζ and 〈n|n′〉 = δnn′ .
(15)

With the definition(−1)±N |n〉 = (−1)±n|n〉 this Fock space also provides a representation
of B+−1(α, β). Next, we shall focus our attention mostly on certain interesting properties of
B−1(α, β)(andB+−1(α, β)).

An elementL exists in the enveloping algebraU(B−1(α, β)) of B−1(α, β) given by

L = λ1a
†a + λ2N + λ3I (16)

and such that

{L, a} = {L, a†} = 0 (17)

provided that the following constraints onλi ∈ R (i = 1, 2, 3) are satisfied

2λ3+ βλ1+ λ2 = 0 2λ2+ αλ1 = 0 (18)

(these will give for exampleλ2/λ1 = −α/2, andλ3/λ1 = (α − 2β)/4 = − α/2 (λ3/λ2),

with α 6= 0). This choice ofL subject to (18) is obviously not unique as it can be easily
checked that any odd power ofL will satisfy (17). However, (16) is theuniqueelement of
a linear combination of lowest-order monomials of generators ofB−1(α, β) that will satisfy
(17). This can be inferred by writingL′ = ClmnNl(a†)man, l, m, n ∈ Z+, Clmn ∈ R and
demanding that (17) are satisfied together with [L′, N ] = 0. For a givenB−1(α, β), i.e. for
given values ofα andβ relations (18) give us the conditions onλi under whichL becomes
zero. In the following we shall assume, unless otherwise stated, thatL is non-zero (for
example whenα = 0 andβ = 0 thenL 6= 0 if and only if λ1 6= 0 or whenα = 0 and
β 6= 0 thenL 6= 0 if and only if βλ1 = −2λ3 6= 0). Then using (18),L ∈ U(B−1(α, β))

can be put in the form

L = λ1

(
a†a − α

2
N +

(
α

4
− β

2

)
I

)
λ1 6= 0. (19)

If we considerB+−1(α, β) then the additional termλ4(−1)Ñ (λ4 ∈ R, λ4 6= 0) can be
considered and an elementL+ ∈ U(B+−1(α, β)) can be taken as

L+ = L+ λ4(−1)Ñ (20)

satisfying (17), while for given values ofα andβ, L+ is also not unique and odd powers
of it will give (17). However, it should be noted that in the case ofB+−1(α, β) the element

λ4(−1)Ñ is the unique non-zero lowest-order monomial satisfying (17). This again can
be inferred by writingL′+ = Cplmn(−1)pNNl(a†)man, p, l, m, n ∈ Z+, Cplmn ∈ R and
demanding that (17) are satisfied together with [L′+, N ] = 0. Relation (20) is then the
next most general one to be considered. Utilizing (13) and (20),1(L+), S(L+) andε(L+)
can easily be found. Relations (17) are also preserved by the Hopf algebra structure (13),
subject to (18), whileL+ is represented on the Fock space (15) as

L+|n〉 =
(
λ1

(
α

4
− β

2

)
+ λ4(−1)

β

α

)
(−1)n|n〉. (21)

Note thatL+ (andL) introduces aZ2 grading on the Fock space.
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As mentioned, constraints (18) can be widely exploited leading to various choices of
values forλi in terms of α, β. In the caseα = 2 and β = 1, λ1 = −λ2, λ3 = 0
andL+ = λ1(a

†a − N) + λ4(−1)Ñ . Then (15) show that on this Fock spacea†a = N ,
aa† = N+I andB+−1(2, 1) reduces to the quotientB/〈C〉 (see the beginning of this section)

extended with the element(−1)a
†a+1/2. Also we can investigate the case where we impose

on B−1(α, β) (or B+−1(α, β)) the additional relation

L2 = ηI (or (L+)2 = ηI) (22)

with η ∈ R, η 6= 0. From the form ofL (see (19)) it can be easily observed thatL2

commutes with all the generators ofB−1(α, β) (andB+−1(α, β)) and thus on any faithful
representation it reduces to a multiple of the identity. Also it can be shown that (22) does
not respect the Hopf algebra structure. In a representation independent way, by using (19)
we obtain the characteristic identity forC = a†a − α

2N

C
(
C +

(α
2
− β

)
I
)
+
(
α

4
− β

2

)2

I = η

λ2
1

I (23)

which when solved will giveL as a multiple of the identity. Obviously, (22) with the
choice ofL given by (19),is not compatible with relations (17). The same incompatibility
is also true for the case ofB+−1(α, β) andL+ given in (20). However if we consider the

elementλ4(−1)Ñ = L+ alone (thus lettingλ1 = 0) then (22) can hold (it is just imposing
the requirementg2 = I ) and the Hopf algebra is preserved.

Finally, it is important in section 3, to observe that if we substitute into (11) the
generatorsN obtained from (19) (or (20)) asN = 2

α
(− 1

λ1
L + a†a + α

4 − β

2 ), then (11)
becomes

[a, a†] = − 2

λ1
L+ α

2
I. (24)

This is true if and only if the values ofα andβ are such thatL andL+ contain the monomial
N , that is when the following values of the pair (α, β) are not considered:α = 0, β = 0
and α = 0, β 6= 0. Relation (24) shows the potentiality ofB−1(α, β) (and B+−1(α, β))
to accommodate and interchange both commutation and anticommutation relations. It is
interesting to investigate whether this relation together with (17) serve as an alternative
definition of B−1(α, β) (or B+−1(α, β)). This will become clearer in section 3 where (24)
and (17) will be compared with (40).

From B−1(α, β) we can obtain a realization ofB(0/1) ' osp( 1
2) by introducing aZ2

grading such thata anda† are odd andN is even and defining

e = µa† f = λa h = 2N + 2β

α
I (25)

providedα 6= 0 andµλ = 2
α

, so that

{e, f } = h [h, e] = 2e [h, f ] = −2f. (26)

Then the Hopf algebra structure ofB+−1(α, β) induces a non-trivial one for osp( 1
2) extended

by the elementg = (−1)Ñ , exactly as in the case of [46] (but usingB−1(α, β) instead
of the ordinary oscillator algebra) and theR-matrix is given by (39) below. The Casimir
invariantI2 = − 1

4e
2f 2− 1

4ef + 1
16h

2− 1
8h on the Fock space (15) takes the eigenvalue

i2 = β2

4α2
− β

4α
(27)
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which shows that the representation is irreducible. Similarly we can obtain a realization of
A1 (as a subalgebra ofB(0/1) for example) by defining

e′ = µ′e2 f ′ = λ′f 2 h′ = 1
2h (28)

providedµ′λ′ = − 1
4, so that

[e′, f ′] = h′ [h′, e′] = 2e′ [h′, f ′] = −2f ′.

We can also obtain a realization of sl(2, R) ' su(1, 1) if we setJ0 = 1
2h
′, J+ = i√

2
e′ and

J− = i√
2
f ′. Then the eigenvalues of the sl(2, R) Casimir invariantC2 = 2J−J+ − J 2

0 − J0

on the Fock space (15) are given by

cn = 1

2
− β

2α
− β2

4α2
+ 2β − α

8α
(3+ (−1)n) (29)

which shows that the representation is completely reducible with the two invariant subspaces
corresponding ton being even andn being odd. The Casimir eigenvaluesceven andcodd are

ceven= −1

4

β2

α2
+ β

2α
codd= 1

4
− β2

4α2
.

From the algebraB1(α, β), anA1 realization can be obtained by setting

e = ξa† f = ϑa h = 2N + 2β

α
I (30)

whereξϑ = −2/α and with the defining relations ofA1 as shown below (28).
Finally, it should be noted that anR-matrix will turn out to be trivial whenζ = 1 or

given by (39) whenζ = −1, as it will be demonstrated in the next section.

3. Deformed boson algebrasBq
ζ (α,β)

We turn now to aq-deformation (q generic) of the algebraBζ (α, β). DefineBqζ (α, β) as

the Lie algebra generated byaq , a†q andN subject to the following relations:

aqa
†
q − ζa†qaq = [αN + β]q ζ = ±1

[N, aq ] = −aq
[N, a†q ] = a†q

(31)

whereα, β ∈ R and [x]q = (qx − q−x)/(q − q−1). This algebra is a Hopf algebra whose
coproduct, counit and antipode satisfy (7) and are given by:

1(N) = N ⊗ I + I ⊗N + β
α
I ⊗ I

1(a) = aq ⊗ q αÑ
2 + ζ Ñq− αÑ

2 ⊗ aq
1(a†q) = a†q ⊗ q

αÑ
2 + ζ−Ñ q− αÑ

2 ⊗ a†q
ε(N) = −β

α
ε(aq) = ε(a†q) = 0 ε(I ) = 1

S(N) = −N − 2β

α
S(aq) = −ζ−Ñ q− α

2 a S(a†q) = −a†qζ Ñ+1q
α
2

(32)

provided thatα 6= 0. An opposite Hopf algebra structure also exists with coproduct1T

and antipode the inverseS−1of S, which can be immediately deduced fromS given in (32).
Similarly to the undeformed case, in order to obtain a Hopf algebra structure forB

q

−1(α, β),
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we have to enlarge it by adding an invertible element(−1)Ñ which will be treated as a
supplementary generator satisfying relations (12) (withaq and a†q in the place ofa and
a† respectively) and (14). We shall denote this extended algebra (its universal enveloping
algebra) asBq+−1 (α, β) (U(B

q+
−1 (α, β))).

A Fock-type representation ofBqζ (α, β), with aq |0〉q = 0, N |n〉q = n|n〉q , n ∈ Z+ and
q〈0|0〉q = 1, exists such that withα 6= 0, β 6= 0

|n〉q = 1√
(n)

q

ζ !
(a†q)

n|0〉q

aq |n〉q =
√
(n)

q

ζ |n− 1〉q a†q |n〉q =
√
(n+ 1)qζ |n+ 1〉q

where

(n)
q

ζ =
1

q − q−1

(
q
α(n−1)

2 +β (q
αn
2 − ζ nq− αn

2 )

(q
α
2 − ζq− α

2 )
− q− α(n−1)

2 −β (q
− αn

2 − ζ nq αn
2 )

(q−
α
2 − ζq α

2 )

)
(n)

q

ζ ! =
n∏

m=1

(m)
q

ζ q〈n|n′〉q = δnn′ .
(33)

With the definition(−1)±N |n〉 = (−1)±n|n〉 this Fock space also provides a representation
of Bq+−1 (α, β). In the limit q → 1 we get the Fock space of the undeformed algebraBζ (α, β)

(andB+−1(α, β)).
B−1(α, β) provides us with a realization of ospq ′(

1
2), with q ′ = qα, which can be

obtained by defining

e = µa†q f = λaq h = N + β
α
I (34)

so that withµλ = [α]−1
q the following ospq ′(

1
2) defining relations are satisfied:

{e, f } = [h]q ′ [h, e] = e [h, f ] = −f (35)

while B1(α, β) provides a slqα/2(2) realization by identifying

e = ξa†q f = ϑaq h = 2N + 2β

α
I (36)

whereξϑ = −[ α2 ]q , so that the defining slqα/2(2) relations below are satisfied:

[e, f ] = [h]qσ/2 [h, e] = 2e [h, f ] = −2f. (37)

Finally, anR-matrix for Bq1 (α, β) andBq+−1 (α, β) exists and is given by

R = R0q
αÑ⊗Ñ

∞∑
l=0

(q − q−1)lqζ
α
4 l(l+1) (−ζ )lζ

1
4 l(l−1)

[l]x !
q
α
2 lÑ ζ lÑ (a†q)

l ⊗ q− α
2 lÑ alq (38)

whereÑ = N + β/α, x = (ζqζα)1/2 and

R0 = 1
2(I ⊗ I + I ⊗ ζ Ñ + ζ Ñ ⊗ I − ζ Ñ ⊗ ζ Ñ ) (39)

provided that whenζ = −1, we demand that(−1)2Ñ = I . Equation (38) has been calculated
using quantum double techniques similar to [44]. It is important to mention that (38) for
ζ = −1, is exactly the same as the one in relation (49) of [46] withq → qα, provided we do
the following identifications with the generators of the bosonization of ospqα (

1
2): Jz = 1

2Ñ ,

V+ = ka
†
q , V− = taq , g = (−1)Ñ , and kt = −[4]−1

qα [α]−1
q . Then we can argue that

B
q+
−1 (α, β) is the spectrum generating quantum group for the ordinaryq-deformed harmonic
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oscillator defined by the relationsaqa
†
q − q±1a

†
qaq = q∓N and the last two of (31). The

R-matrices for the undeformed Hopf algebras of section 2 can now be read off from (38)
and (39) at the limitq → 1, whereR→ R0 which for B1(α, β) is just the identity.

4. The generalized ‘ν-deformed’ Heisenberg algebraHδ,ν

We shall now generalize the so-called ‘deformed’ Heisenberg algebra of Vassiliev [12]. This
is defined as the algebraHδ,ν generated byb, b† andK subject to the following relations:

[b, b†] = δI + νK
{K, b} = {K, b†} = 0

(40)

whereδ, ν ∈ R. If we impose the additional requirements thatK2 = I then withδ = 1 we
obtain that of [12], used for example in [13, 29, 30].

A Fock-type representation (a generalization of that appearing in [29, 30]), withb|0>=
0 and 〈0|0〉 = 1, exists so that ifν > e0 and δ > 0 a unitary representation ofHδ,ν is
provided by:

|m〉 = 1

([m]!)
1
2

(b†)m|0〉

b|m〉 = [m]
1
2 |m− 1〉 b†|m〉 = [m+ 1]

1
2 |m+ 1〉

K|m〉 = ν − δ + 1

ν
(−1)m|m〉

where

[m] = δm+ ν − δ + 1

2
(1+ (−1)m+1)

[m]! =
m∏
l=1

[l] 〈m|m′〉 = δmm′
(41)

m ∈ Z+ . The striking similarity of the Fock spaces (15) forζ = −1 and (41) is not
accidental. As we shall just show under certain conditions we can obtainB−1(α, β) from
Hδ,ν and vice versa, not only on the above Fock spaces but as abstract algebras.Hδ,ν can
be extended so that the resulting algebra will possess a Hopf algebra structure. There exists
in the enveloping algebraU(Hδ,ν) of Hδ,ν an elementM given by

M = µ1b
†b + µ2K + ρI (42)

and satisfying

[M,b] = −b [M,b†] = b† (43)

whereµi, ρ ∈ R (i = 1, 2) provided that the following constraint is satisfied

µ1δI + (2µ2− νµ1)K = I. (44)

This suggests that, sinceK should notbe a multiple of the identity, (as this contradicts the
second equation of (40)) necessarilyδ 6= 0 which leads toµ1 = 1/δ and 2µ2 − νµ1 = 0.
Consequently with the above constraints (42) now becomes

M = 1

δ
b†b + ν

2δ
K + ρI (45)

and

M|m〉 =
(
m+ ν − δ + 1

2δ
+ ρ

)
|m〉 (46)
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which by choosingρ = − ν−δ+1
2δ , M|m〉 = m|m〉. The choice ofM given by (45) is

obviously not the most general possible but it is the unique non-zero combination of lowest-
order monomials of generators ofHδ,ν that satisfy (43) while such an element does not exist
if δ = 0 (these considerations can be inferred by writingM ′ = ClmnKl(b†)mbn, l,m, n ∈ Z+,
Clmn ∈ R, and demanding that (43) are satisfied together with [M ′,K] = 0). Now we are
in a position to demonstrate the similarities betweenB−1(α, β) andHδ,ν . Solving (45) with
respect toK and substituting into the first equation of (40) we obtain

{b, b†} = 2δM + δ(1− 2ρ)I (47)

so that together with (43)Hδ,ν takes the form of the defining relations ofB−1(α, β), (11)
by setting

α = 2δ β = δ − 2ρδ (48)

and whereM is replaced byN . Note that for the case where we chooseρ = − ν−δ+1
2δ ,

Hδ,ν takes the form ofB−1(2δ, ν + 1). This process can also be carried out in the opposite
direction, as (17) and (24) suggest, by setting in (24)

δ = α/2 ν = −2/λ1 (49)

and whereL is replaced byK. It is easy to observe that, asλ1 6= 0, (49) shows that
B−1(α, β) cannot be mapped to aHδ,0-form. AlsoB−1(0, β) cannot be mapped to aHδ,ν-
form at all, since the appropriateL fails to exist (no monomialN is present inL even if
we perform a thorough search for a more generalL in U(B−1(α, β))). Also (48) shows
that aB−1(α, β)-form of H0,ν fails to exist sinceM cannot be defined and forHδ,0 the
appropriateM does not exist (no monomialK is present inM) thus also not allowing a
B−1(α, β)-form. Consequently provided that we keep away from the valuesα = δ = ν = 0
we can always obtain aHδ,ν-form of B−1(α, β) and vice versa. Relations (48) and (49) also
imply thatρ andβ can have arbitrary values. However, an observation of the Fock spaces
(15) and (41) and a comparison of the action ofK, M, L andN on them, shows that with
identifications (48), (49),ρ = − ν−δ+1

2δ andβ = ν + 1 not only are these spaces equivalent
but alsoHδ,ν andB−1(α, β) are isomorphic withK ≡ L, N ≡ M, b ≡ a, b† ≡ a†.

It can be checked that the following mapsϕ : B−1(α, β) → Hδ,ν and ϕ′ : Hδ,ν →
B−1(α, β) defined by:

ϕ(a) = b ϕ(a†) = b† ϕ(N) = 2

α
b†b + ν

α
K + δ − β

α
α 6= 0 (50)

ϕ′(b) = a ϕ′(b†) = a† ϕ′(K) = −2

ν
a†a + α

ν
N + β − δ

ν
ν 6= 0 (51)

are homomorphismsif and only if α = 2δ. Moreover, ϕ′ = ϕ−1 and ϕ becomes an
isomorphismHδ,ν ' B−1(α, β) provided that bothα 6= 0 and ν 6= 0. ϕ and ϕ′ can be
thought of as defining families of maps where each member is parametrized byα, β, ν and
δ, β, ν respectively and we can formally writeϕ ≡ ϕα,β,ν andϕ′ ≡ ϕ′δ,ν,β . So for example
B−1(2, 1) is mapped viaϕ2,1,ν to H1,ν (ν a fixed chosen number) andH1,ν is mapped via
ϕ−1

2,1,ν = ϕ1,ν,1 back toB−1(2, 1). Finally it can be checked that

ϕ(L) = −λ1ν

2
K ϕ′(M) = N + β − δ

2δ
+ ρ. (52)

With the existence ofM of the form of (45) we can enlargeHδ,ν by adding the invertible
element(−1)M , as we did in the case ofB−1(α, β). We shall denote this enlarged algebra
by H+δ,ν and the relations that(−1)M has to satisfy are given by:

{(−1)±M, a} = {(−1)±M, a†} = 0 [(−1)±M,K] = 0 (53)
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and on (41) will be represented as(−1)M |m〉 = (−1)m+
ν−δ+1

2δ +ρ |m〉. H+δ,ν can obviously be
treated in the spirit of [46] as was done withB+−1(α, β), with the elementg of [46] being

g = (−1)M̃ , whereM̃ = M−ρ+ 1
2. ThusH+δ,ν can be considered as a spectrum-generating

algebra of the ordinary oscillator algebra. Moreover, the isomorphism can also be extended
such thatH+δ,ν ' B+−1(α, β) by definingϕ((−1)Ñ ) = (−1)M̃ , ϕ′((−1)M̃) = (−1)Ñ .

Then a Hopf algebra structure forH+δ,ν is given by:

1(K) = K ⊗ I + I ⊗K + δ
ν
I ⊗ I − 2

ν
(−1)−M+ρ−

1
2b ⊗ b† + 2

ν
(−1)M−ρ+

1
2b† ⊗ b

1(b) = b ⊗ I + (−1)M−ρ+
1
2 ⊗ b

1(b†) = b† ⊗ I + (−1)−M+ρ−
1
2 ⊗ b†

ε(K) = − δ
ν

ε(b) = ε(b†) = 0 ε(I ) = 1

S(K) = K S(b) = −(−1)−M+ρ−
1
2b S(b†) = b†(−1)M−ρ+

1
2

(54)

1((−1)±M) = (−1)±(
1
2−ρ)(−1)±M ⊗ (−1)±M

S((−1)±M) = (−1)∓M±(2ρ−1) ε((−1)±M) = (−1)±(ρ−
1
2 )

(55)

provided thatν, δ 6= 0. As in the case ofB+−1(α, β) it is not necessary to impose at this

stage the condition(−1)2M̃ = I (which implies that(−1)2M = (−1)2ρ−1). The form of
1(M), ε(M) andS(M) is given by

1(M) = M ⊗ I + I ⊗M + ( 1
2 − ρ)I ⊗ I

ε(M) = ρ − 1
2 S(M) = −M + 2ρ − 1.

(56)

It can be checked that usingϕ andϕ′ we can show that the above-mentioned isomorphism
also carries to the Hopf algebra structures ofB+−1(α, β) andH+δ,ν . An opposite Hopf algebra
structure also exists with an antipode, the inverse of the one given above, which can be
immediately deduced from it.

Finally we can obtain a realization of osp( 1
2) by defining

e = µb† f = λb h = ν

δ
K + 2

δ
b†b + I (57)

provided thatµλ = 1
δ
, while for A1 (as a subalgebra of osp( 1

2)) by defining

e′ = µ′(b†)2 f = λ′b2 h′ = ν

2δ
K + 1

δ
b†b + 1

2
I (58)

providedµ′λ′ = − 1
4δ2 . Implementing the Hopf structure ofHδ,ν we can obtain a Hopf

structure for the bosonization of osp( 1
2) as was the case forB+−1(α, β). In particular it is

expected that anR-matrix for Hδ,ν will be of the form of (39) withM̃ in the place ofÑ ,
provided we also demand that(−1)2M̃ = I .

5. Conclusion

In this paper we considered the generalized boson algebrasBζ (α, β), ζ = ±1, and
their q-deformed versionsBqζ (α, β). It was all shown to admit a quasitriangular Hopf
algebra structure provided we also enlargeB−1(α, β) andBq−1(α, β) by the element(−1)N .
In particular this structure revealed the property thatB+−1(α, β) and Bq+−1 (α, β) can be
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treated as spectrum-generating quantum groups for the undeformed andq-deformed bosons
respectively. AlthoughB1(α, β) and Bq1 (α, β) can be thought of as a more ‘natural’
generalization andq-deformation of the ordinary boson algebraB, it is the ζ = −1 case
that is important because of the isomorphism ofB−1(α, β) andHδ,ν (and their respective
enlargementsB+−1(α, β) andH+δ,ν) demonstrated in section 4 which carries over to their
Hopf algebra structure. To our knowledge it is the first time that the Calogero–Vasiliev
ν-deformed Heisenberg algebraH1,ν , slightly modified (i.e.K2 6= I ), can be formulated as
a Hopf algebra. Moreover, it is expected that there should exist aq-deformation,Hq

δ,ν other
than the one of [14] or [13] which may admit a Hopf structure, giving a two-parameter
deformation of the Heisenberg algebra and possibly not being isomorphic withB

q

−1(α, β),
thus giving rise to a newR-matrix. Consequences of these Hopf-type boson algebras
on physical models such as the Calogero–Sutherland models, supersymmetric quantum
mechanics, anyonic systems (whose references are mentioned in the introduction) or on
radial problems, BRST symmetry [48], are under investigation. It is anticipated that the
Hopf algebra structure, and especially the quasitriangular nature of these algebras, might
reveal interesting connections with the integrability of the above physical systems.

Another important aspect of these models is their relations with existing ones. In the
work under completion [45] we investigate the various quotients and subalgebras of these
undeformed and deformed models using the powerful tool of the fixed point set of the
adjoint action of a Hopf algebra. It is shown how known undeformed andq-deformed
boson algebras appear as fixed-point subalgebras or as appropriate quotients. It is at this
point that the role of the Cuntz algebra is also investigated.

Braid group representations and possible link invariants for all of the proposed models
of deformed and undeformed bosons are worth investigating, while the osp( 1

2) and A1

realizations obtained point towards realizations of higher rank algebras and superalgebras
which will also allow the construction of families of infinite-dimensional representations
when the above Fock spaces are generalized.

Finally, one should comment on the implications of the generalized boson algebras, in
particularB−1(α, β), andBq−1(α, β), for quantum statistics. As the usual oscillator algebra
does not possess a Hopf algebra structure, it is difficult to characterize the multiparticle
Hamiltonian. However, in our case by generalizing to a many-particle systemBi−1(α, β)

i = 1, 2, . . . (and in particular takingα = 2, β = 1 which on the Fock space will give
ai†ai = Ni , aiai† = Ni+I ) the total Hamiltonian (taken to be proportional toαÑ = {a, a†})
has a very natural interpretation as being proportional to1(n)(Ñ), the n-fold coproduct of
the one-particle Hamiltonian. Perhaps of most interest are the implications for the quantum
statistics ofBq−1(α, β). In this case the existence of the coproduct ofÑ implies various
logical possibilities for the multiparticle Hamiltonian, which may be more acceptable than
the obvious (but arbitrary) choice∝∑i [Ni ]q which has no justification in terms of a Hopf
structure. Non-local effects will probably emerge from such choices, which may play a
crucial role in modifying the partition functions and statistics of the system.
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