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Abstract. Certain types of generalized undeformed and deformed boson algebras which admit
a Hopf algebra structure are introduced, together with their Fock-type representations and their
correspondingR-matrices. It is also shown that a class of generalized Heisenberg algebras

including those underlying physical models such as that of Calogero—Sutherland, is isomorphic
with one of the types of boson algebra proposed, and can be formulated as a Hopf algebra.

1. Introduction

Deformations of the boson algebra have recently been the subject of extensive research partly
because of their significance in quantum groups (see for example [1-5]) and supergroups
[6]. Chronologically first comes the Arik—Coagrdeformation of the Heisenberg algebra

[7]:

aa' —qala =1 Q)
followed by the Macfarlane—Biedenharn [8, 9], and Sun and Fu §t@¢formed bosons

aal — ¢g*ata = g™V (2)
The Chakrabarti—-Jaganathan two-parameter model [11]

aa' — pata=q7" )
and the Calogero—Vasiliev model [12]

[a,a'l =1+ 2vK K?=1 @)
which coupled with (2) as

aa' —qala = ¢V (I + 2vK) (5)
was studied in [13], while itg-deformation by Macfarlane [14] is

aa’ — g*It2Kgtaq = [ + 2vK],gTN 0 K = -1V (6)

where as usuak], = (¢*—¢~)/(g—g~1). In addition, with the Katriel-Quesne minimally
deformed oscillators [28] which provides an attempt to unify existing deformed oscillators,
generalizations and applications of the above models to mathematics and physics have been
of increasing interest, and their consistency, interrelation and representations have been well
analysed [15-27].

Generalizations of the usual Heisenberg algebra that have appeared in [12] have been
implemented [29, 30], in describing relativistic fields with arbitrary fractional spin (anyon),
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‘bosonizing’ supersymmetric quantum mechanics and pointing out the relation of it with
integrable quantum mechanical models [31] such as the Calogero—Sutherland model [32, 33].

On the other hand, the recent investigation [34—38] of simpjed¢formations of the
Heisenberg algebra has also been shown to play a key part in obtaining and classifying
representations of deformed boson algebras [39].

The relation of a possible Hopf algebra structure consistent both with an appropriate
definition of a boson algebra and its deformation have also been addressed [23,40-43]. In
particular in [41-43] a certain definition of deformed boson algebra was investigated having
a Hopf algebra structure, while in [44] tHR-matrix obtained was corrected and generalized
using the quantum double construction. The results of [41] were partly generalized in [23].

The aim of this paper is to investigate certain generalizations of undeformed and
deformed boson algebras possessing a Hopf algebra structure, which in [45] will be used
to establish an algebraic relation with already known boson algebras (undeformed and
deformed). In section 2, after introducing general notions on quasitriangular Hopf algebras,
we present and analyse the properties of undeformed generalized boson alBeforas),
¢ = 41, which admit a Hopf algebra structure, while in section 3 we givedeformation
Bf(a, B) of the previous algebras, prove that they also admit a Hopf structure and present
an R-matrix for them. We further analyse, in section 4, a more general form of the
‘deformed’ Heisenberg algebrd, of [12], showing that under certain conditions it admits
a Hopf algebra structure and demonstrate its connection with the undeformed boson algebra
B (a, p) defined in the second section. Finally, in section 5 we end with certain comments
on possible physical and mathematical applications and consequences of our approach.

2. The undeformed generalized boson algebraB(c, 3)

We begin by stating certain generalities on quasitriangular Hopf algebras needed later.
Consider a unital associative algebra, over a figldwith multiplicationm : A® A — A
(i.e.m(a ®b) = ab, YVa andVb € A) and unitu : F — A (i.e.u(1) = I, the identity onA)
endowed with a Hopf algebra structure (cf [47]), that is, having a coprouct — A®A,

a counite : A — F (which is a homomorphism) and an antiposie A — A (which is an
antihomomorphism, i.eS(ab) = S(b)S(a), and we shall assume that it has an invessé)
subject to the following consistency condition:

([d®A)A(@) = (A ®id)A(a)
([d®e)A(a) = (¢ Qid)A(a) = a (7
m(id®S)Aa) =m(S Qid)A(a) = e(a)l VYa € A.
Let T be the twist map oA ® A defined byT (a ® b) = b ® a. Then an opposite Hopf
algebra structure also exists enwith coproduct” A = AT, antipode S! and counit as

before. According to Drinfeld [1] a Hopf algebr&is called quasitriangular if an invertible
elementkR € A ® A exists such that

AT(@)R = RA(a) VYae A

Ri3R23 = (A® IR Ri3R12 = (I ® AR
with the usual meaning a®1», R13, Rz as embeddings ®® in AQ A® A. The inverseR—*
is then given byR™! = (S ® I)R and it is easily shown thaR satisfies the Yang—Baxter
equation,R12R13R23 = Ra3R13R1>.

Before introducing the algebrA; («, B), recall that the boson algebi® is generated

by a, af, and N subject to the following relations:

[a,a'l =1 [N,a] = —a [N,a']=d' 9)

)
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and a Fock space representation is provided by

1
R | =
Iy = = @0y Nin) = nin) (10)

aln) = Vnln =1 afln) =@+ Dln + 1).

The popular identificatioa’a = N andaa’ = N + 1 holds in the quotienB/(C) (and
on the above Fock space) whefg) is the two-sided ideal generated by= afa — N. As
was demonstrated in [40], a Hopf algebra structure on this algebra fails to exist.

We shall now consider the family of algebrAs(«, 8) generated by, a" and N subject
to the following relations:

aa' —cala = aN + BI =41

[N,a] = —a (11)

[N,a']=d'
wherew, 8 € R. If we take the quotient oB_1(2, 1) with respect to an ideal generated by
a'a — N we recoverB/(C) above. Although a Hopf algebra structure ®y(«, B) exists
(see (13) below)B_1(«, B) has to be enlarged to become a Hopf algebra by adding an

invertible element—1)" which will be treated as a supplementary generator satisfying the
following relations:

(DY, a}=0={((-D",a"}  [(-D",N]=0 (12)

where hereaftefx, y} = xy + yx. Similar considerations were used in [46] and in that
paper’s context our enlarged algel#a; («, #) can be thought of as a spectrum-generating
algebra for the ordinary harmonic oscillator, while the elemgeat [46] will be g = =V
provided that we impose the conditigh = (—1)2¥ = I whereN = N+£. At this point we
do not necessarily have to impose this condition (which impliesthay?¥ = (—1)=2#/«).
We shall denote this enlarged algebra and its universal enveloping algebis, ey 8)
and U(Bfl(oz, B)) respectively. The coproduct, counit and antipodeBgta, ) satisfing
(7) are given by:

A(N)=N®I+I®N+EI®I

o

A(a)=a®l+fﬁ®a

Adh=a @I+ V@ad w3
S(N)Z—é ga) =¢e@H) =0 e(H=1

o
S(N)=—-N — 207'3 S(a) = —gff’a S@ah = _aT;-NJrl

provided thatx # 0, together with
ACEDF) = D @ -DF  e(-D) =1 S(-D) =D, (19)
for the¢ = —1 case. Moreover, an opposite Hopf algebra structure also exisk ar 8)
with coproductA” and antipode the inversgtof S which can be immediately deduced
from S given in (13) and (14).

A Fock-type representatioB, (o, 8), with ¢|0) = 0, N|n) = n|n),n € Z; and
(0]0y = 1, exists such that, wham > 0, 8 > 0 is unitary and is provided by:

1
In) = +(@")"0)
([”];l) 2
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am)=[nin—1  alln)=[n+ 10+ 1)

[n]; = (O;H + 2’34_“(1+ ;"+1)> (W)

where

n (15)
[n]! =] (1 and (nln'y = Sy
=1

With the definition(—1)*" |n) = (—=1)*"|n) this Fock space also provides a representation
of B¥,(a, B). Next, we shall focus our attention mostly on certain interesting properties of
B_1(a, B)(and B (a, B)).

An elementL exists in the enveloping algebfa(B_1(«, B8)) of B_1(«, B) given by

L = a'a + 1N + sl (16)
and such that

{L,a)={L,a'}=0 17)
provided that the following constraints dn € R (i = 1, 2, 3) are satisfied

23+ Brr+r=0 2o+ ar; =0 (18)

(these will give for example.,/A1 = —a/2, andiz/A = (@ — 28)/4 = — /2 (A3/X2),
with & # 0). This choice ofL subject to (18) is obviously not unique as it can be easily
checked that any odd power afwill satisfy (17). However, (16) is thaniqueelement of
a linear combination of lowest-order monomials of generatorB_af«, 8) that will satisfy
(17). This can be inferred by writing’ = C,,, N (a")"a", I, m, n € Z,, Cjp, € R and
demanding that (17) are satisfied together with V] = 0. For a givenB_1(«, B8), i.e. for
given values ofx andg relations (18) give us the conditions apunder whichL becomes
zero. In the following we shall assume, unless otherwise stated,Lthatnon-zero (for
example wherw = 0 andB8 = 0 thenL # 0 if and only if A1 # 0 or whena = 0 and
B # 0thenL # 0 if and only if BA; = —2A3 # 0). Then using (18)L € U(B_1(«, B))
can be put in the form

L=k <a*a — %N + (Z - g) 1) A1 #£0. (19)

If we consider B*,(«, g) then the additional termu(—l)N (Aq4 € R, 14 # 0) can be
considered and an elemeht e U(Bfl(a, B)) can be taken as

Lt =L+ =DV (20)

satisfying (17), while for given values of and 8, L™ is also not unique and odd powers
of it will give (17). However, it should be noted that in the caseBof, («, B) the element

xa(=1"V is the unigue non-zero lowest-order monomial satisfying (17). This again can
be inferred by writingL'* = C,(=1)PYN'(@)"a", p, 1, m, n € Zy, Cpin € R and
demanding that (17) are satisfied together withi*[ N] = 0. Relation (20) is then the

next most general one to be considered. Utilizing (13) and (RQL™), S(L™) ande(L™)

can easily be found. Relations (17) are also preserved by the Hopf algebra structure (13),
subject to (18), whileL™ is represented on the Fock space (15) as

L¥|n) = (kl (Z - g) +)»4(—1)5> (=1)"|n). (21)

Note thatL™ (and L) introduces &, grading on the Fock space.
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As mentioned, constraints (18) can be widely exploited leading to various choices of
values fora; in terms ofa, 8. In the casew = 2 andpB = 1, Ay = —Ap, A3 = 0
and LT = Ai(afa — N) + xa(=2D)". Then (15) show that on this Fock spact: = N,
aa' = N+1 andB*;(2, 1) reduces to the quotierit/(C) (see the beginning of this section)
extended with the elemeiit-1)*'“*Y/2. Also we can investigate the case where we impose
on B_i(a, B) (or B, (e, B)) the additional relation

L? =l (or (LH2 =nI) (22)

with n € R,n # 0. From the form ofL (see (19)) it can be easily observed thzt
commutes with all the generators 8f 1(«, 8) (and B*,(«, B)) and thus on any faithful
representation it reduces to a multiple of the identity. Also it can be shown that (22) does
not respect the Hopf algebra structure. In a representation independent way, by using (19)
we obtain the characteristic identity faf = afa — 5N

2
o a B _n

C(C+(2_ﬁ>l)+(4_2>1_xfl (23)
which when solved will giveL as a multiple of the identity. Obviously, (22) with the
choice of L given by (19),is not compatible with relations (17). The same incompatibility
is also true for the case d8*,(«, B) and L™ given in (20). However if we consider the
elementis(—1)Y = L+ alone (thus letting.; = 0) then (22) can hold (it is just imposing
the requiremeng? = I) and the Hopf algebra is preserved.

Finally, it is important in section 3, to observe that if we substitute into (11) the

generatorsV obtained from (19) (or (20)) a& = 2(—£L +ala + § - %), then (11)
becomes

He_27.¢
[a,a']l = ML~|-21. (24)

This is true if and only if the values of and are such that. andL* contain the monomial
N, that is when the following values of the pair,(8) are notconsidered:a = 0,8 =0
anda = 0,8 # 0. Relation (24) shows the potentiality @&_1(e, 8) (and B*;(«, B))
to accommodate and interchange both commutation and anticommutation relations. It is
interesting to investigate whether this relation together with (17) serve as an alternative
definition of B_1(«, B) (or B¥;(«, B)). This will become clearer in section 3 where (24)
and (17) will be compared with (40).

From B_1(«, B) we can obtain a realization a#(0/1) ~ osp(%) by introducing aZ,
grading such that anda' are odd andv is even and defining

i 2p

e=pna f=ha h=2N+ —1I (25)
o

providedo # 0 andui = 2, so that

le, f1=nh [, e] =2e [, f1=-2f. (26)
Then the Hopf algebra structure Bﬁl(oe, B) induces a non-trivial one for osg)) extended

by the elementg = (-1, exactly as in the case of [46] (but usim®y 1(«, 8) instead

of the ordinary oscillator algebra) and tiematrix is given by (39) below. The Casimir

invariantl, = —;e?f2 — Zef + 15h® — 5h on the Fock space (15) takes the eigenvalue
. B* B



4080 | Tsohantjis et al

which shows that the representation is irreducible. Similarly we can obtain a realization of
A1 (as a subalgebra a#(0/1) for example) by defining

e/ — M/eZ f/ — )\./fz h/ — %]’l (28)
providedu's’ = —3, so that

[ /1= [W.el=2 . f]=-2f.
We can also obtain a realization of &l R) ~ su, 1) if we setJy = %h/, Jy = %Ze/ and

J_ = %Zf’. Then the eigenvalues of the(&l R) Casimir invariantC, = 2J_J, — J& — Jo
on the Fock space (15) are given by
1 B p> 28—«
h=2—=2— >+
2 2a 4a? 8u
which shows that the representation is completely reducible with the two invariant subspaces
corresponding ta being even ana being odd. The Casimir eigenvaluegen andcqgq are

B+ (=DM (29)

182 B 1
Coen="4g2 T 2q  CNT 3T gz
From the algebraB;(«, ), an A; realization can be obtained by setting
. 2
e=¢&d f=1va h=2N+—'BI (30)
o

where&9 = —2/a and with the defining relations of; as shown below (28).
Finally, it should be noted that aR-matrix will turn out to be trivial whern; = 1 or
given by (39) when; = —1, as it will be demonstrated in the next section.

3. Deformed boson aIgebrang(a, B)

We turn now to ag-deformation § generic) of the algebr®, («, 8). Define Bg(a, B) as
the Lie algebra generated lay, aqT and N subject to the following relations:

aqa; — {a;aq = [aN + 8], r==1
[N, a,] = —qaq (31)
[N, a;] = aqT

wherea, 8 € R and [x], = (¢* —q¢)/(q — g~ ). This algebra is a Hopf algebra whose
coproduct, counit and antipode satisfy (7) and are given by:

A(N)=N®I+I®N+él®l
o

o _aN
Aa)y=a;®q? +¢V¢ % ®aq,
Neal @D e V0% 4t
Aa))y=al®q? +¢ Vg7 ®a) (32)
e(N) = _F e(ay) = £(a)) =0 e()=1
o

2 5 e , Ga a
S(N) = —N — ;’3 Stag)=—t g ta  S(a)) = —afc"tq?
provided thatoe # 0. An opposite Hopf algebra structure also exists with coprodifct
and antipode the inversgtof S, which can be immediately deduced frafrgiven in (32).
Similarly to the undeformed case, in order to obtain a Hopf algebra structus fa, ),
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we have to enlarge it by adding an invertible elemenfl)V which will be treated as a
supplementary generator satisfying relations (12) (wifhand a; in the place ofa and
a' respectively) and (14). We shall denote this extended algebra (its universal enveloping
algebra) asB’; («, B) (U(B'] (@, B))).

A Fock-type representation cﬂg’(a, B), with a,410), =0, N|n), = n|n),, n € Z, and
4(0]0), = 1, exists such that witlr £ 0, 8 # 0

1
n)y =
RN
agln)g = \/?n — 1), alln)g = \/(n+ Diln + 1),
where

mi= 1(61“(”2”*'3”“21_;""_:;)— —“‘”z“-ﬁ(q_a{_gnq:;))
- gz —¢q™2) (g 2 —¢q?)

mit=T]m?  gnln')y =8
m=1

(@})"10)4

(33)

With the definition(—1)*" |n) = (—=1)*"|n) this Fock space also provides a representation
of Bﬂ'(a, B). Inthe limitg — 1 we get the Fock space of the undeformed algéht@, 8)
(and B*,(a, B)).

B_1(«a, B) provides us with a realization of o,;p%), with ¢’ = ¢%, which can be
obtained by defining

e = pal f =xa, h=N+§I (34)
so that withui = [oz];1 the following osg,(%) defining relations are satisfied:

{e. [} =[hly [h,e] =e [h, f1=—f (35)
while Bi(a, B) provides a sk2(2) realization by identifying

e=Eka) f = va, h=2N+%BI (36)

whereéd = —[3],, so that the defining gl-(2) relations below are satisfied:
le, f1=[hl4er [h,e] = 2e [h, f1=-2Ff. (37)
Finally, an R-matrix for B{ (o, 8) and BY; («, 8) exists and is given by

Vel N NN GO U ST ) Sy
R = Rog” ;(q—q )q‘““qu t"™NahY ® g Na) (38)
whereN = N + B/a, x = (£¢**)Y? and
Ro=l1@I+10"+"@1-tY oY) (39)

provided that whey = —1, we demand tha(t—l)ZN = I. Equation (38) has been calculated
using quantum double techniques similar to [44]. It is important to mention that (38) for
¢ = —1, is exactly the same as the one in relation (49) of [46] with- ¢*, provided we do

the following identifications with the generators of the bosonization of.ggp: J. = 3N,

Ve = ka;, Vo = ta,, g = (-DV, and kt = —[4];}[04];1. Then we can argue that

BZ{(a, B) is the spectrum generating quantum group for the ordigagdgformed harmonic
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oscillator defined by the relations,a) — g*'aja, = ¢¥" and the last two of (31). The
R-matrices for the undeformed Hopf algebras of section 2 can now be read off from (38)
and (39) at the limiy — 1, whereR — R which for Bi(«, B) is just the identity.

4. The generalized v-deformed’ Heisenberg algebraHs ,,

We shall now generalize the so-called ‘deformed’ Heisenberg algebra of Vassiliev [12]. This
is defined as the algebi; , generated by, b' and K subject to the following relations:

[b,b'] = 81 +vK
{K,b} = {K,b'} =0
wheres, v € R. If we impose the additional requirements ttkat = I then withs = 1 we
obtain that of [12], used for example in [13, 29, 30].
A Fock-type representation (a generalization of that appearing in [29, 30]) pV@tk =

0 and (0|0) = 1, exists so that it > ¢0 and§ > 0 a unitary representation df; , is
provided by:

(40)

1
= +(01"[0)
([m]t)2

blm) = [m]?|m — 1) blm) = [m + 1]%|m + 1)

m)

v—358+1
K|m) = f(—l)mlnﬂ
where
— 1
il = om+ "0 g -1y

m (41)
] =T (mlm) = S
=1

m € Z, . The striking similarity of the Fock spaces (15) for= —1 and (41) is not
accidental. As we shall just show under certain conditions we can oBtaitx, ) from

H;,, and vice versa, not only on the above Fock spaces but as abstract algebrasan

be extended so that the resulting algebra will possess a Hopf algebra structure. There exists
in the enveloping algebr& (Hs ,) of Hs, an elementM given by

M = pu1b'b + oK + pl (42)
and satisfying

[M,b] = —b [M,b'] = b (43)
whereu;, p € R (i = 1, 2) provided that the following constraint is satisfied

uadl + uz —vpu)K = 1. (44)

This suggests that, sindeé should notbe a multiple of the identity, (as this contradicts the
second equation of (40)) necessaily4 0 which leads tqus = 1/8 and 2up, — vy = 0.
Consequently with the above constraints (42) now becomes

1 v
M="blb+ K+ pI 45
g0 0Tk Te (45)
and
—85+1
M|m) = (m + VT + ,0) |m) (46)
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which by choosingpe = —”‘§8+1, M|m) = m|m). The choice ofM given by (45) is
obviously not the most general possible but it is the unique non-zero combination of lowest-
order monomials of generators # , that satisfy (43) while such an element does not exist

if 8 = 0 (these considerations can be inferred by writhg= Cj,,., K (b")"b",1,m,n € Z,,

Ci.n € R, and demanding that (43) are satisfied together with, K] = 0). Now we are

in a position to demonstrate the similarities betwéen(«, 8) and Hs,,,. Solving (45) with

respect toK and substituting into the first equation of (40) we obtain
{b,b'} = 25M + 5(1 — 2p)I (47)

so that together with (43}; , takes the form of the defining relations Bt 1(«, 8), (11)
by setting

o=25 B=28—2ps (48)

and whereM is replaced byN. Note that for the case where we chogse= —”‘258*1,

H;,, takes the form ofB_1(26, v + 1). This process can also be carried out in the opposite
direction, as (17) and (24) suggest, by setting in (24)

§=ua/2 v=—-2/\ (49)

and whereL is replaced byK. It is easy to observe that, &s # 0, (49) shows that
B_i1(x, ) cannot be mapped to H; o-form. Also B_1(0, 8) cannot be mapped to H; -
form at all, since the appropriate fails to exist (no monomialV is present inL even if
we perform a thorough search for a more gendrah U(B_i(«, B))). Also (48) shows
that a B_1(«, B)-form of Hp, fails to exist sinceM cannot be defined and fadi; o the
appropriateM does not exist (ho monomid is present inM) thus also not allowing a
B_1(a, B)-form. Consequently provided that we keep away from the valuess = v =0
we can always obtain &; ,-form of B_;(«, 8) and vice versa. Relations (48) and (49) also
imply that p and 8 can have arbitrary values. However, an observation of the Fock spaces
(15) and (41) and a comparison of the actionkaf M, L and N on them, shows that with
identifications (48), (49)p = —”‘§8+1 and g = v + 1 not only are these spaces equivalent
but alsoH;,, and B_1(«, B) are isomorphic withk = L, N = M, b =a, b' = al.

It can be checked that the following maps: B_i(«, 8) — Hs, and¢’ : Hs, —
B_1(a, B) defined by:

o@=b o= oy=bb+ k+°"P 420 (50)
o (07 o

/3_

Vv

. . 2.
YWy =a  gOh=d YK =-"da+ N+ v#£0 (51)
Y Y
are homomorphism# and only if « = 25. Moreover,¢’ = ¢~! and ¢ becomes an
isomorphismH;,, ~ B_i(a, 8) providedthat botha # 0 and v # 0. ¢ and¢’ can be
thought of as defining families of maps where each member is parametrizedsby and
8, B, v respectively and we can formally write = ¢, g, andg’ = ¢j, ,. So for example
B_1(2, 1) is mapped viap, 1, to Hy, (v a fixed chosen number) arnfd; , is mapped via
goz_iv = @11 back toB_1(2,1). Finally it can be checked that
A1V , -4
(P(L):—%K §0(M)=N+%+P- (52)

With the existence oM of the form of (45) we can enlargd; ,, by adding the invertible
element(—1)™, as we did in the case df_;(a, 8). We shall denote this enlarged algebra
by H{v and the relations that-1) has to satisfy are given by:

{(=D*M a} = {(-D)*M,a'} =0 [(-D* K]=0 (53)
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v=38+1

and on (41) will be represented as1)¥ |m) = (=1 = °|m). H;fv can obviously be
treated in the spirit of [46] as was done with", (¢, B), with the elementg of [46] being
g= (—)M™, whereM = M — o+ % ThusH;fv can be considered as a spectrum-generating
algebra of the ordinary oscillator algebra. Moreover, the isomorphism can also be extended
such thatH;", ~ B*,(a, g) by definingp((—1)") = (-1, ¢’ (-D)M) = (=D)V.

Then a Hopf algebra structure fa)f({v is given by:

AK)=K®I+IQK + %1 I — %(—1)*’”“*%1; Qb+ %(—1)"4*“%1;T Qb

Ay =b® T+ (DM "+ @b

AGHY =bl @I+ (=1)"M+°=2 @ p' (54)
e(K) = —é e(b) =e(bH) =0 e()=1

S(K) =K Sb) = —(—1)7M+p7%b S(bjf) — bj-(—l)M7p+%
A=D1 = (~D)*E (1) @ (-1

_N\EMN _ _1\FME(R2p-1) CNNEMN i(p—l) (55)
S(=D™") =D (D) =(=D7"2

provided thatv, § # 0. As in the case oB™,(«, B) it is not necessary to impose at this
stage the conditiori—1)2" = I (which implies that(—1)2" = (—1)>-1). The form of
A(M), e(M) and S(M) is given by

AM)=MQI+IQM+ (3 —pI®I

1 (56)
eM)=p—3 S(M) =M +2p— 1.

It can be checked that usingand¢’ we can show that the above-mentioned isomorphism
also carries to the Hopf algebra structuresbof («, ) and H(;fv. An opposite Hopf algebra
structure also exists with an antipode, the inverse of the one given above, which can be
immediately deduced from it.

Finally we can obtain a realization of q%) by defining

2
e=ubl  f=xb h:§K+3b*b+1 (57)
provided thatui = §, while for A; (as a subalgebra of 0&}) by defining
¢ =/ (bhH? f=1b? W=2K+ }b*b + 1 (58)
26 ) 2
provided u'A’ = —&. Implementing the Hopf structure dff;, we can obtain a Hopf

structure for the bosonization of (@3 as was the case fdﬁfl(a, B). In particular it is
expected that aR-matrix for Hs,, vv~iII be of the form of (39) withM in the place ofN,
provided we also demand that1)?M = .

5. Conclusion

In this paper we considered the generalized boson algeBfas, ), ¢ = £1, and
their g-deformed versionng(a, B). It was all shown to admit a quasitriangular Hopf

algebra structure provided we also enlayg (o, 8) and BY | («, B) by the element—1)".
In particular this structure revealed the property tiat (o, 8) and BZ{(a, B) can be
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treated as spectrum-generating quantum groups for the undeformeddeidrmed bosons
respectively. AlthoughBi(«, 8) and Bf(«, B) can be thought of as a more ‘natural
generalization ang-deformation of the ordinary boson algebBa it is the¢ = —1 case

that is important because of the isomorphismBofy(«, 8) and H;,, (and their respective
enlargementsB™, (o, B) and H,",) demonstrated in section 4 which carries over to their
Hopf algebra structure. To our knowledge it is the first time that the Calogero—Vasiliev
v-deformed Heisenberg algebta ,, slightly modified (i.e.K? # I), can be formulated as

a Hopf algebra. Moreover, it is expected that there should exjsdeformation,Hé{v other

than the one of [14] or [13] which may admit a Hopf structure, giving a two-parameter
deformation of the Heisenberg algebra and possibly not being isomorphicBfitte, 8),

thus giving rise to a newkR-matrix. Consequences of these Hopf-type boson algebras
on physical models such as the Calogero—Sutherland models, supersymmetric quantum
mechanics, anyonic systems (whose references are mentioned in the introduction) or on
radial problems, BRST symmetry [48], are under investigation. It is anticipated that the
Hopf algebra structure, and especially the quasitriangular nature of these algebras, might
reveal interesting connections with the integrability of the above physical systems.

Another important aspect of these models is their relations with existing ones. In the
work under completion [45] we investigate the various quotients and subalgebras of these
undeformed and deformed models using the powerful tool of the fixed point set of the
adjoint action of a Hopf algebra. It is shown how known undeformed g@mutformed
boson algebras appear as fixed-point subalgebras or as appropriate quotients. It is at this
point that the role of the Cuntz algebra is also investigated.

Braid group representations and possible link invariants for all of the proposed models
of deformed and undeformed bosons are worth investigating, while thgl)osqmd Aq
realizations obtained point towards realizations of higher rank algebras and superalgebras
which will also allow the construction of families of infinite-dimensional representations
when the above Fock spaces are generalized.

Finally, one should comment on the implications of the generalized boson algebras, in
particular B_1(«, B), and B?(, B), for quantum statistics. As the usual oscillator algebra
does not possess a Hopf algebra structure, it is difficult to characterize the multiparticle
Hamiltonian. However, in our case by generalizing to a many-particle systeftw, )

i =1,2,... (and in particular takingr = 2, 8 = 1 which on the Fock space will give
a'ta’ = N, a'a't = N'+1) the total Hamiltonian (taken to be proportionabt®y = {a, a'})

has a very natural interpretation as being proportionaht8(N), the n-fold coproduct of

the one-particle Hamiltonian. Perhaps of most interest are the implications for the quantum
statistics of B («, B). In this case the existence of the coproducthofimplies various
logical possibilities for the multiparticle Hamiltonian, which may be more acceptable than
the obvious (but arbitrary) choice ;[ N;], which has no justification in terms of a Hopf
structure. Non-local effects will probably emerge from such choices, which may play a
crucial role in modifying the partition functions and statistics of the system.
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